Assignment 5

15 .
1. Approximate the integral Lg sin (x)dx using each of the approximations we described using h = 1 and

then again using h = 0.5. These include Riemann sums, the trapezoidal rule, Simpson’s rule, our O(h®)
centered rule, and the backwards 3-point and 4-point rules. Are the approximations using centered
interpolating polynomials as accurate as those using only points to the left?

From Calculus, you know the correct answer is cos(13) — cos(15) = 1.667134694309018 to sixteen
significant digits. Which is the most accurate formula?

Here is MATLAB code that calculates most of these:

a = 13.0;
b = 15.0;
soln = -cos(b) - (-cos(a));

printf("Actual integral: %.10f\n", soln);

for n = [2 4]
h= (b - a)/n;
rs = 0.0;
tr = 0.0;
c5 = 0.0;
b3 = 0.0;
b4 = 0.0;
for k = 1:n
X = a + k*h;
rs = rs + sin(x);
tr = tr + sin(x - h) + sin(x);
c5 = ¢5 - sin(x - 2*h) + 13.0*sin(x - h) + 13.0*sin(x) - sin(x + h);
b3 = b3 - sin(x - 2*h) + 8.0*sin(x - h) + 5.0*sin(x);
b4 = b4 + sin(x - 3*h) - 5.0*sin(x - 2*h) + 19.0*sin(x - h) + 9.0*sin(x);
end
rs = rsk*h;
tr = tr*h/2.0;
c5 = c5*h/24.0;
b3 = b3*h/12.0;
bd = b4a*h/24.0;
printf("Riemann sum: %.10f\n", rs);
printf(" Error: %.10f\n", abs(rs - soln));
printf("Trapezoidal rule: %.10f\n", tr);
printf(" Error: %.10f\n", abs(tr - soln));
printf("Centered order 5: %.10f\n", c5);
printf(" Error: %.10f\n", abs(c5 - soln));
printf("Backward 3-point: %.10f\n", b3);
printf(" Error: %.10f\n", abs(b3 - soln));
printf("Backward 4-point: %.10f\n", b4);
printf(" Error: %.10f\n", abs(b4 - soln));
end

sr = (sin(13) + 4*sin(14) + sin(15))/6.0*2;

printf("Simpson's rule: %.10f\n", sr);

printf(" Error: %.10f\n", abs(sr - soln));

sr = (sin(13) + 4*sin(13.5) + 2*sin(14) + 4*sin(14.5) + sin(15))/6.0*1;
printf("Simpson's rule: %.10f\n", sr);

>> printf(" Error: %.10f\n", abs(sr - soln));

Here is C++ code that calculates most of these:

double a{ 13.0 };
double b{ 15.0 };

double soln{ -std::cos(b) - (-std::cos(a)) };
std::cout << "Actual integral:

for (
dou
dou
dou
dou
dou
dou

for (unsigned

unsigned
ble h{ (b
ble rs{ 0.
ble tr{ 0.
ble c5{ 0.
ble b3{ o.
ble b4{ o.

<< soln << std::endl;

intn{ 23} n<=4;n+=2) {

-a)y/n);
0}
0}
0}
0}
0}

int k{ 1 }; k

double x{ a + k*h };

rs += std::sin(x);
tr += std::sin(x - h) +
c5 += -std::sin(x - 2.0*h) + 13
b3 += -std::sin(x - 2.0*h) + 8
b4 += std::sin(x - 3.0*h) - 5
¥
rs *= h;
tr *= h/2.0;
c5 *= h/24.0;
b3 *= h/12.0;
b4 *= h/24.0;
std::cout << "Riemann sum: "
std::cout << " Error: "
std::cout << "Trapezoidal rule: "
std::cout << " Error: "
std::cout << "Centered order 5: "
std::cout << " Error: "
std::cout << "Backward 3-point: "
std::cout << " Error: "
std::cout << "Backward 4-point: "
std::cout << " Error: "

<<
<<
<<
<<
<<
<<
<<
<<
<<
<<

std:
.0*std:
.0*std:
.0*std:

rs

std:

tr

std:

c5

std:

b3

std:

b4

std:

<=n; ++k) {

rabs(
rabs(
rabs(
rabs(

rabs(

tsin(x);
:sin(x - h) +
:sin(x - h) +
:sin(x - 2.0*h) + 19.0*std::sin(x - h) + 9.0*std::sin(x);

soln)
soln)
soln)
soln)

soln)

13.0*std::sin(x) -
5.0*std::sin(x);

<< std::endl;
<< std::endl;
<< std::endl;
<< std::endl;
<< std::endl;

std::sin(x + h);

The output is

Actual integral:

Riemann sum:

Error:
Trapezoidal rule:
Error:
Centered order 5:
Error:
Backward 3-point:
Error:
Backward 4-point:
Error:

Simpson's rule:

Error:

Riemann sum:

Error:
Trapezoidal rule:
Error:
Centered order 5:
Error:
Backward 3-point:
Error:
Backward 4-point:
Error:

Simpson's rule:

Error:

The 4-point backward divided-difference rule is less accurate than the 4-point centered divided-difference
formula, as expected. Simpson’s rule, which awkwardly spans two intervals, is the most accurate.

OrRroOFrRFOFRRFOFRORFRLROR

OrRrOoOFROFROFRO®ORLROR

.6671346943

.6408951959
.0262394985
.5258347942
.1412999001
.6427385836
.0243961107
.6339230834
.0332116109
.6924265209
.0252918266
.6776280999
.0104934056

.6897873390
.0226526447
.6322571381
.0348775562
.6655599277
.0015747666
.6643861444
.0027485499
.6694930783
.0023583840
.6677312528
.0005965585

2. Suppose we have a function that is piecewise constant, but discontinuous, so that f (a) = 1 and
f (b) = 0, and somewhere between a and b, the value of the function drops from 1 to 0. We don’t know
exactly when between a and b the function f drops from 1 to 0, so what is the minimum and maximum

b
possible values of the integral I f (X) dx ? Use each of the formulas that estimate the integral of a function
a

over one interval, including the trapezoidal rule, the O(h®) centered rule, the O(h?) three-point backward
rule and the O(h®) four-point backward rule. Recall some values may be outside the range [a, b], so assume
f(x)=1forx<aandf(x)=0forx>bh.

Which formula would you say is the best approximation?

If the discontinuity is close to a, then the integral is close to zero, while if the discontinuity is close to be,
then the integral is close to b — a. Approximating this integral with each of these techniques results in

1. %A +0)b—a)=05(0b—-a)
2, %(b —a) =05 —a)
3. %0 (h—a) =0.58333 (b —a)
1-5+19+0

12
4. EEE (b —a) = 0.625(b —)

Of these, the first two provide the minimum error because the approximation is exactly between the
minimum and maximum values of the integral; however, the second formula does require future data (that
is, data to the right of the interval).

3. Given the readings from a sensor that are being taken periodically,
6.2615, 6.8847, 7.4471, 8.0392, 8.6836
where the last is the most recent reading, do the following with least-squares best-fitting linear polynomials:

a. approximate the value of the underlying signal at the time of the last reading,
. estimate the value of the underlying signal one time step into the future,
c. estimate the rate of change of the underlying signal assuming the readings are being taken once
every 10 seconds, and
d. estimate the integral over the most recent time step of the underlying signal, again, assuming the
readings are being taken once every 10 seconds.

0 1 8.6836
—1 1 8.0392
andy =

Solving ATAc=ATywhere A = | —2 1 7.4471 |,
-3 1} 6.8847
—4 1 6.2615
you get the interpolating polynomial 0.59987t + 8.66296, and thus we have:

a. b=8.66296

b. a+b=9.26283

c. a/10=0.059987 units per second

d. 10(b —a/2) = 83.63025 unit seconds

4. Given the readings from a sensor that are being taken periodically,
3.786, 3.2866, 2.5966, 1.6497, 0.5556

where the last is the most recent reading, do the following with least-squares best-fitting quadratic
polynomials:

a. approximate the value of the underlying signal at the time of the last reading,
estimate the value of the underlying signal one time step into the future,
estimate the rate of change of the underlying signal assuming the readings are being taken once
every 10 seconds, and

d. estimate the integral over the most recent time step of the underlying signal, again, assuming the
readings are being taken once every 10 seconds.

(0 O 1\ 0.5556
_ | 1 -1 1| (1.6497 _ _ _
SolvingATAc=ATywhereA=| 4 —2 1 |andy= | 2.5966 |,y0u get the interpolating polynomial
9 -3 1) k3.2866
16 —4 1 3.7860

~0.1033071428571426t> — 1.222998571428570t + 0.5487457142857153, and thus we have:

a. €=0.5487457142857153

b. a+b+c=-0.77756

c. b/10=-0.1222998571428570 units per second

d. 10(a/3 —b/2 +c) =1.125809285714286 unit seconds

5. In Question 4, what would be your best estimate as to when the underlying signal will be zero?

. .) Y .)
Because b is negative, the smaller root can be calculated with the formula T which yields the value

0.4328616173640030 but this is in scaled time, so in real time, the zero should occur approximately
4.33 seconds into the future.

