
Assignment 5 

1. Approximate the integral  
15

13
sin dx x  using each of the approximations we described using h = 1 and 

then again using h = 0.5. These include Riemann sums, the trapezoidal rule, Simpson’s rule, our O(h5) 

centered rule, and the backwards 3-point and 4-point rules. Are the approximations using centered 

interpolating polynomials as accurate as those using only points to the left? 

From Calculus, you know the correct answer is cos(13) – cos(15) = 1.667134694309018 to sixteen 

significant digits. Which is the most accurate formula? 

Here is MATLAB code that calculates most of these: 

a = 13.0; 
b = 15.0; 
soln = -cos(b) - (-cos(a)); 
printf( "Actual integral:  %.10f\n", soln ); 
 
for n = [2 4] 
  h = (b - a)/n; 
  rs = 0.0; 
  tr = 0.0; 
  c5 = 0.0; 
  b3 = 0.0; 
  b4 = 0.0; 
   
  for k = 1:n 
    x = a + k*h; 
     
    rs = rs + sin(x); 
    tr = tr + sin(x - h) +        sin(x); 
    c5 = c5 - sin(x - 2*h) + 13.0*sin(x - h) +   13.0*sin(x) - sin(x + h); 
    b3 = b3 - sin(x - 2*h) +  8.0*sin(x - h) +    5.0*sin(x); 
    b4 = b4 + sin(x - 3*h) –  5.0*sin(x - 2*h) + 19.0*sin(x - h) + 9.0*sin(x); 
  end 
   
  rs = rs*h; 
  tr = tr*h/2.0; 
  c5 = c5*h/24.0; 
  b3 = b3*h/12.0; 
  b4 = b4*h/24.0; 
   
  printf( "Riemann sum:      %.10f\n", rs ); 
  printf( "           Error: %.10f\n", abs( rs - soln ) ); 
  printf( "Trapezoidal rule: %.10f\n", tr ); 
  printf( "           Error: %.10f\n", abs( tr - soln ) ); 
  printf( "Centered order 5: %.10f\n", c5 ); 
  printf( "           Error: %.10f\n", abs( c5 - soln ) ); 
  printf( "Backward 3-point: %.10f\n", b3 ); 
  printf( "           Error: %.10f\n", abs( b3 - soln ) ); 
  printf( "Backward 4-point: %.10f\n", b4 ); 
  printf( "           Error: %.10f\n", abs( b4 - soln ) ); 
end 
 
sr = (sin(13) + 4*sin(14) + sin(15))/6.0*2; 
printf( "Simpson's rule:   %.10f\n", sr ); 
printf( "           Error: %.10f\n", abs( sr - soln ) ); 
sr = (sin(13) + 4*sin(13.5) + 2*sin(14) + 4*sin(14.5) + sin(15))/6.0*1; 
printf( "Simpson's rule:   %.10f\n", sr ); 
>> printf( "           Error: %.10f\n", abs( sr - soln ) ); 

 

  



Here is C++ code that calculates most of these: 

double a{ 13.0 }; 
double b{ 15.0 }; 
double soln{ -std::cos(b) - (-std::cos(a)) }; 
std::cout << "Actual integral:  " << soln << std::endl; 
 
for ( unsigned int n{ 2 }; n <= 4; n += 2 ) { 
  double h{ (b - a)/n ); 
  double rs{ 0.0 }; 
  double tr{ 0.0 }; 
  double c5{ 0.0 }; 
  double b3{ 0.0 }; 
  double b4{ 0.0 }; 
   
  for ( unsigned int k{ 1 }; k <= n; ++k ) { 
    double x{ a + k*h }; 
     
    rs +=  std::sin(x); 
    tr +=  std::sin(x - h)     +      std::sin(x); 
    c5 += -std::sin(x – 2.0*h) + 13.0*std::sin(x - h) +     13.0*std::sin(x) -         std::sin(x + h); 
    b3 += -std::sin(x – 2.0*h) +  8.0*std::sin(x - h) +      5.0*std::sin(x); 
    b4 +=  std::sin(x – 3.0*h) –  5.0*std::sin(x – 2.0*h) + 19.0*std::sin(x - h) + 9.0*std::sin(x); 
  } 
   
  rs *= h; 
  tr *= h/2.0; 
  c5 *= h/24.0; 
  b3 *= h/12.0; 
  b4 *= h/24.0; 
   
  std::cout << "Riemann sum:      " << rs  
  std::cout << "           Error: " << std::abs( rs - soln ) << std::endl; 
  std::cout << "Trapezoidal rule: " << tr  
  std::cout << "           Error: " << std::abs( tr - soln ) << std::endl; 
  std::cout << "Centered order 5: " << c5  
  std::cout << "           Error: " << std::abs( c5 - soln ) << std::endl; 
  std::cout << "Backward 3-point: " << b3  
  std::cout << "           Error: " << std::abs( b3 - soln ) << std::endl; 
  std::cout << "Backward 4-point: " << b4  
  std::cout << "           Error: " << std::abs( b4 - soln ) << std::endl; 
} 

 

  



The output is 

Actual integral:  1.6671346943 
 
Riemann sum:      1.6408951959 
           Error: 0.0262394985 
Trapezoidal rule: 1.5258347942 
           Error: 0.1412999001 
Centered order 5: 1.6427385836 
           Error: 0.0243961107 
Backward 3-point: 1.6339230834 
           Error: 0.0332116109 
Backward 4-point: 1.6924265209 
           Error: 0.0252918266 
Simpson's rule:   1.6776280999 
           Error: 0.0104934056 
 
Riemann sum:      1.6897873390 
           Error: 0.0226526447 
Trapezoidal rule: 1.6322571381 
           Error: 0.0348775562 
Centered order 5: 1.6655599277 
           Error: 0.0015747666 
Backward 3-point: 1.6643861444 
           Error: 0.0027485499 
Backward 4-point: 1.6694930783 
           Error: 0.0023583840 
Simpson's rule:   1.6677312528 
           Error: 0.0005965585 
 
The 4-point backward divided-difference rule is less accurate than the 4-point centered divided-difference 

formula, as expected. Simpson’s rule, which awkwardly spans two intervals, is the most accurate. 

 

  



2. Suppose we have a function that is piecewise constant, but discontinuous, so that f (a) = 1 and 

f (b) = 0, and somewhere between a and b, the value of the function drops from 1 to 0. We don’t know 

exactly when between a and b the function f drops from 1 to 0, so what is the minimum and maximum 

possible values of the integral  d
b

a
f x x ? Use each of the formulas that estimate the integral of a function 

over one interval, including the trapezoidal rule, the O(h5) centered rule, the O(h4) three-point backward 

rule and the O(h5) four-point backward rule. Recall some values may be outside the range [a, b], so assume 

f (x) = 1 for x < a and f (x) = 0 for x > b. 

Which formula would you say is the best approximation? 

If the discontinuity is close to a, then the integral is close to zero, while if the discontinuity is close to be, 

then the integral is close to b – a. Approximating this integral with each of these techniques results in 

1. ½(1 + 0)(𝑏 − 𝑎) = 0.5(𝑏 − 𝑎) 

2. 
−1+13+0+0

24
(𝑏 − 𝑎) = 0.5(𝑏 − 𝑎) 

3. 
−1+8+0

12
(𝑏 − 𝑎) = 0.58333⋯(𝑏 − 𝑎) 

4. 
1−5+19+0

24
(𝑏 − 𝑎) = 0.625(𝑏 − 𝑎) 

Of these, the first two provide the minimum error because the approximation is exactly between the 

minimum and maximum values of the integral; however, the second formula does require future data (that 

is, data to the right of the interval). 

3. Given the readings from a sensor that are being taken periodically,  

6.2615, 6.8847, 7.4471, 8.0392, 8.6836 

where the last is the most recent reading, do the following with least-squares best-fitting linear polynomials: 

a. approximate the value of the underlying signal at the time of the last reading, 

b. estimate the value of the underlying signal one time step into the future, 

c. estimate the rate of change of the underlying signal assuming the readings are being taken once 

every 10 seconds, and 

d. estimate the integral over the most recent time step of the underlying signal, again, assuming the 

readings are being taken once every 10 seconds. 

Solving ATAc = ATy where 1
−3 1
−4

 and , 

you get the interpolating polynomial 0.59987t + 8.66296, and thus we have: 

a. b = 8.66296 

b. a + b = 9.26283 

c. a/10 = 0.059987 units per second 

d. 10(b – a/2) = 83.63025 unit seconds 

  



4. Given the readings from a sensor that are being taken periodically,  

3.786, 3.2866, 2.5966, 1.6497, 0.5556 

where the last is the most recent reading, do the following with least-squares best-fitting quadratic 

polynomials: 

a. approximate the value of the underlying signal at the time of the last reading, 

b. estimate the value of the underlying signal one time step into the future, 

c. estimate the rate of change of the underlying signal assuming the readings are being taken once 

every 10 seconds, and 

d. estimate the integral over the most recent time step of the underlying signal, again, assuming the 

readings are being taken once every 10 seconds. 

Solving ATAc = ATy where 1
9 −3 1
16 −4

 and , you get the interpolating polynomial 

–0.1033071428571426t2 – 1.222998571428570t + 0.5487457142857153, and thus we have: 

a. c = 0.5487457142857153 

b. a + b + c = –0.77756 

c. b/10 = –0.1222998571428570 units per second 

d. 10(a/3 – b/2 + c) = 1.125809285714286 unit seconds 

5. In Question 4, what would be your best estimate as to when the underlying signal will be zero? 

Because b is negative, the smaller root can be calculated with the formula , which yields the value 

0.4328616173640030 but this is in scaled time, so in real time, the zero should occur approximately 

4.33 seconds into the future. 


